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Uncertainty: meaning and importance

Uncertainty answers this question:

Given a value, within what spread of values is it
reasonable to consider that the truth lay?

Has climate changed? Uncertainty and nature of underlying error.
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EUSTACE and Uncertainty

Outline:
Introductory comments (done that!)
Station Data (done that!)
Satelltie ST retrieval and uncertainty validation
L2 to L3 uncertainty propagation

Satellite-to-T,,,
Usage of uncertainty information in SAT analysis
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Sources and propagation of
uncertainty

Satellite
radiances
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weights, ...
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Temperature

Estimated Analysis
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Satellite Surface Temperature Data

e Common three-component uncertainty model
— random
— locally correlated
— systematic

e Validation of uncertainty

* Three-component model
— Applies to all domains, land, ice, lake, sea
— Applies across processing levels
— Provides information propagated into analysis
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Land ST Uncertainty Components

VARIABLE

METHOD

COMMENTS

LST_UNC_RAN

L2 Random 1/
Radiance noise
Propagation

L2 Random 2/
Emissivity noise
Propagation

uran,y(x) = \/22:1 (aa_fc uran(Yc))z

2

bane = | (5= trane0))

c=1

Random component of L1 channel uncertainties
propagated through the retrieval

Estimate of the magnitude of pixel-to-pixel scale
emissivity variability within areas based on land
cover class

LST_UNC_LOC

L2 Local 2/
Uncertainty from
atmosphere/fit for
regression-based
retrieval

L2 Local 2/
Uncertainty from
Emissivity

uloc,fit(x) = \/V“r(f — Xin)

2

Upgc,e(X) = Zn: (aa—fculoc(fc)>

c=1

Atmospheric fields correlated on timescales >1
day and length scales >100 km. For coefficient
based retrieval methods the retrieval ambiguity
is a contributor of residuals in the fit

Across a particular land class area, there may be
a mean difference between the assumed and
true mean emissivity

LST_UNC_SYS

L2 Systematic 1/
Reasoned
estimate

Assumed that known corrections have been applied by data producers and what remains
is describable as an uncertainty in the bias of the satellite surface temperatures relative to

other data sources of temperature (ie from validation)
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MODIS LST Uncertainties

Locally correlated - atmosphere
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SEVIRI LST Uncertainties

Random

Locally correlated

LST_unc_ran [K]

A A A A A A
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LST_unc_loc [K]

mA_A———A—A—Z.A

0.2 0.27 034 041 048 055 062 0.7 0.77 0.84 091 098 1.05 1.12
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ICE ST UNCERTAINTY MODEL B
NOISE IN MEOP-A- METOP-A
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VALIDATION OF SATELLITE UNCERTAINTIES

* Test the goodness-of-fit between the uncertainty from in situ validation (0 ground)
and the total satellite product uncertainty for each associated matchup (0,

— 2 2 2 2 2
* Ototal = \/Gsat T Ogrouna T Ospace T Otime (+O-depth)

* 0O, listhe total LST uncertainty for satellite pixel

*  Ogound IS the uncertainty associated with the ground-based measurement

* O is the uncertainty associated with matching a satellite and ground

space

observation in a spatial context

* O IS the uncertainty associated with matching a satellite and ground
observation in time

*  Ogeptn IS the uncertainty due to the difference in depth of the measurements (SST
only)
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IST UNCERTAINTY VERIFICATION

e Validation against independent radiometer observations from ARMS
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AASTI IST uncertainty validation with respect to ARM in-situ data for 2008. Dashed lines show ideal
uncertainty model accounting for uncertainties in the in situ data and geophysical uncertainties
arising from spatial and temporal collocation. Solid black lines show one standard deviation of the
retrieved minus in situ IST differences for each 0.1 K bin.
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Sources and propagation of
uncertainty
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PROPAGATION OF L2 -> L3
UNCERTAINTIES

LST: Uncertainties propagated from 1km LST pixels (upixel) -> global 0.25 grid LST (ucell):

el upixel
ucellmndom _ \/ 1 EZuplxe random ] N ncloudVARLST uc ellswﬁwe _ \/ Z p surface 0.1 K
nclear nclear nclear + ncloud _1 nclear T
T T’ Global,

U _ _ yeell = /Z”Pixelam systematic

ncertainty Sampling " Pew uncertainty
due to noise, uncertainty 1\
etc (e.g. cloud)

Locally correlated uncertainties
due to surface and atmosphere

corrections

RANDOM LOCAL SYSTEMATIC
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SIMPLE AIR-SEA TEMPERATURE
DIFFERENCE MODEL

Climatological
Offset — Fourier
components

Temporally and
spatially correlated
variability

Data from ICOADS 2.5
Y

etothcs 1963-2000 UsTALE S
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UNCERTAINTY IN SATELLITE LSAT

* Simple multiple linear regression model to estimate LSAT:

Trnax=0o+ 0.LSTy,, + 04, LST o+ 03.FVC + ,,.SZA + Qs.SnOW + €

noon

T.in=Bo+ Bl'LSTday + BZ.LSTngt+ B;.FVC + B,.SZA, ,ont Bs.Snow + €.

VegetatlonT TSoIar Zenith T
fraction angle at noon  Error
— 2 2 2 2 2\%
Random Tmaxucell_random_ (al 'LSTday_uceII_random + aZZ'LSTngt_uceII_random + Q3 'FVCuceII_random )
i - 2 2 2 2 2 2\%
Tmmucell_random_ (Bl 'LSTday_uceII_random + BZ 'LSTngt_uceII_random + B3 'FVCuceII_random )
— 2 2 2 2 2\% ]
Tmaxatm_ (al 'LSTday_uceII_atm + (12 'LSTngt_uceII_atm + oTmax ) onax/onln
Atmosphere . , , , , o = StDev of model
Tmmatmz (Bl 'LSTday_uceII_atm + BZ 'LSTngt_uceII_atm +oTmin ) : residuals
— 2 2 2 2 2 2\%
Surface Tmaxsurf_ (al 'LSTday_uceII_surf +Q, 'LSTngt_uceII_surf + Q3 'FVCuceII_IocaI )

Tminsurf= (Blz'I-STday_uceII_surf2 + BZZ'LSTngt_uceII_surf2+ B32'FVCuceII_Ioca|2)yzf—
b EUSTACE



EXAMPLE UNCERTAINTY FIELDS
(1 JULY 2010)

Tmmrand( Tmaxrandom

Tmin,, Tmax,,

Tmmsurf Tmaxsurf
Met Office | | | |

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Temperature (deg C)
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Advanced Standard Air Temperature Model

Temperature Process Decomposition

» Temperature variability is decomposed into model sub-components with defined
structure in space/time:

T(s,t) = T (s,1) + T8, 1) + T (s, 1)

T (s,t) = Temperature at space/time location (s, t)
T°"™ (s, t) = Climatological temperature
T'®"%° (5, t) = Large spatialitemporal scale component

T'°?! (5. t) = Daily, short spatial scale component

o~
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Temperature Observation Model

Observation model
Daily mean air temperatures are decomposed into variability at different scales:

Y =T(s"t") + b + ¢

Where b’ is a sum of observational biases affecting observation 7 and €' are non-bias
related observational errors.

yi = An air temperature observation index by ¢

T(s",t") = Temperature at space/time location (s, %)

b* = Additive bias associated with observation i

€' = Error associated with observation 7

o~
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Analysis method

Spatial interpolation based on the SPDE approach (Lindgren et al 2011):
» Temperatures are modelled as weighted sum of local functions.
» A Bayesian method, where variability/smoothness is controlled by a prior
distribution for the weights.
» Compute the probability density function of the weights conditioned on the
temperature observations.

Temperature
Temperature

Location Location

Lindgren, F., H. Rue, J. Lindstrém, (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73, 4 *

Met Office EUSTACE



Met Office

Analysis method

Estimation of temperatures and observation biases

Jointly estimate temperature model variables 1 and observation bias variables (3, with
= (u, 3) and observations:

y=Jyu+JgB+e
=Jzx+ €

Apply Bayes’ Rule to compute the analysis:

Prior : (x| 0) ~N(1y, Qz")
Observations : (y|z,0) ~N(x,Q.")
Posterior : plx|y,0) xp(y |z 0)p(x|0)

Observational uncertainties are encoded into (). Structured errors have their
structure encoded into J g and their magnitude 3 is estimated.

o~
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Model Component Solutions

Linear Model

» Each of the three model components are constructed as a linear (or linearised)
model, with a design matrix J and latent variables to be estimated x:

y=Jxr+e
> Measurement error is additive Gaussian p(€) = N (0, Q. ")

> Model variables & have a Gaussian prior distribution p(x) = N (g, Q")

Compute the distribution of & conditioned on the observations:
e =il
-1 7T
Qm\y = Qm + JTQeJ

Efficient solution depends on the sparse structure of J, @, and Q.. ¥
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Demonstration Application

» Demonstrated on small region/subset
of input data.

Climatology Daily local analysis

» Applied to in situ air temperature
(HadNMAT2, GHCN Daily) and
satellite LST derived air temperature.

> Climatology fitted using observations
in 1961-1990.

> Placeholder uncertainty information.

Observations 01/03/2008

g e¢o HadNMAT2 platforms
- EUSTACE LST-LSAT

oo
@ 00

awx GSN stations o0 o o
EJ *
> > g7 .
%00 T s ey 1
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CONCLUSIONS

skin-to-air model ‘ ttttttttt Analysis
assumptions and Grid Air T,, QE

EUSTACE attempting an integrated and coherent
treatment of uncertainty at all levels of data

Input data uncertainties have been estimated and
validated

Propagated and introduced uncertainty
characterised as required at each step

— L12>L2—2>L3-2>Analysis

Coherency across observational epochs through
consistent statistical treatment of uncertainty

EUSTACE has received funding from the European Union's Horizon 2020 Programme for
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