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Uncertainty:	meaning	and	importance
Uncertainty	answers	this	question:
Given	a	value,	within	what	spread	of	values	is	it	

reasonable	to	consider	that	the	truth	lay?

Has	climate	changed?	Uncertainty	and	nature	of	underlying	error.



STATION	DATA http://www.ecad.eu/

See	also	Antonello	
Squintu’s poster!

Many of	these	series	
have	inhomogeneities

before after



BREAK	DETECTION

T	night,	
station	Bamberg

T	night distributions:
10	years before (blue)	
and after (red)	the
break	in	1952
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THE	ADJUSTMENTS
Each	coloured line	gives	the	
adjustment	against	a	different	
neighbouring station

Adjustment of	the
original series



EUSTACE	and	Uncertainty	
Integrated	approach	across	project
– Common	understanding	&	models	of	uncertainty

Outline:
Introductory	comments	(done	that!)
Station	Data	(done	that!)
Satelltie ST	retrieval	and	uncertainty	validation
L2	to	L3	uncertainty	propagation
Satellite-to-T2m
Usage	of	uncertainty	information	in	SAT	analysis



Sources	and	propagation	of	
uncertainty
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uncertainty



Satellite	Surface	Temperature	Data

• Common	three-component	uncertainty	model
– random
– locally	correlated
– systematic	

• Validation	of	uncertainty	
• Three-component	model
– Applies	to	all	domains,	land,	ice,	lake,	sea
– Applies	across	processing	levels
– Provides	information	propagated	into	analysis



Land	ST	Uncertainty	Components
VARIABLE METHOD COMMENTS

LST_UNC_RAN

L2 Random 1 /

Radiance noise

Propagation

L2 Random 2 /

Emissivity noise

Propagation
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Random component of L1 channel uncertainties
propagated through the retrieval

Estimate of the magnitude of pixel-to-pixel scale
emissivity variability within areas based on land
cover class

LST_UNC_LOC

L2 Local 2 /

Uncertainty from

atmosphere/fit for

regression-based

retrieval

L2 Local 2 /

Uncertainty from

Emissivity
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Atmospheric fields correlated on timescales >1
day and length scales >100 km. For coefficient
based retrieval methods the retrieval ambiguity
is a contributor of residuals in the fit

Across a particular land class area, there may be
a mean difference between the assumed and
true mean emissivity

LST_UNC_SYS

L2 Systematic 1 /

Reasoned

estimate

Assumed that known corrections have been applied by data producers and what remains
is describable as an uncertainty in the bias of the satellite surface temperatures relative to
other data sources of temperature (ie from validation)



MODIS	LST	Uncertainties

Total Random

Locally	correlated	- atmosphere Locally	correlated	- surface



SEVIRI	LST	Uncertainties
Random Locally	correlated



ICE ST	UNCERTAINTY MODEL
NOISE IN	MEOP-A- METOP-A

• NEdTs obtained from	Jon	Mittaz,	Univ.	
Reading.	

• Noise propagated through algorithm by	
perturbation – but	same	philosophy



VALIDATION	OF	SATELLITE	UNCERTAINTIES

• Test	the	goodness-of-fit	between	the	uncertainty	from	in	situ	validation	(σsat-ground)	
and	the	total	satellite	product	uncertainty	for	each	associated	matchup	(σtotal)
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• σsat is	the	total	LST	uncertainty	for	satellite	pixel
• σground is	the	uncertainty	associated	with	the	ground-based	measurement
• σspace is	the	uncertainty	associated	with	matching	a	satellite	and	ground	

observation	in	a	spatial	context
• σtime is	the	uncertainty	associated	with	matching	a	satellite	and	ground	

observation	in	time
• σdepth is	the	uncertainty	due	to	the	difference	in	depth	of	the	measurements	(SST	

only)



IST	UNCERTAINTY	VERIFICATION
• Validation against independent	radiometer	observations	from	ARMS

AASTI	IST	uncertainty	validation	with	respect	to	ARM	in-situ	data	for	2008.	Dashed	lines	show	ideal	
uncertainty	model	accounting	for	uncertainties	in	the	in	situ	data	and	geophysical	uncertainties	
arising	from	spatial	and	temporal	collocation.	Solid	black	lines	show	one	standard	deviation	of	the	
retrieved	minus	in	situ	IST	differences	for	each	0.1	K	bin.



Sources	and	propagation	of	
uncertainty



PROPAGATION	OF	L2	->	L3	
UNCERTAINTIES

LST:		Uncertainties	propagated	from	1km	LST	pixels	(upixel)	->	global	0.25	grid	LST	(ucell):
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SIMPLE	AIR-SEA	TEMPERATURE	
DIFFERENCE	MODEL

MAT =	SST	+	δ +	ε

Climatological	
Offset	– Fourier	
components

Temporally	and	
spatially	correlated

variability	

Measured	by	
satellite/ship

THE	THING	
DESIRED

Measured	by	
ships	only

Data	from	ICOADS	2.5
1963-2000



Spatial	variogram

Temporal	variogram



• Simple	multiple	linear	regression	model	to	estimate	LSAT:

UNCERTAINTY	IN	SATELLITE	LSAT

Tmax=α0+	α1.LSTday +	α2.LSTngt+	α3.FVC	+	α4.SZAnoon+	α5.Snow	+	εTmax

Tmin=β0+	β1.LSTday +	β2.LSTngt+	β3.FVC	+	β4.SZAnoon+	β5.Snow	+	εTmin

Vegetation	
fraction

Solar	Zenith	
angle	at	noon Error

Tmaxucell_random=	(α1
2.LSTday_ucell_random2 +	α22.LSTngt_ucell_random2+	α3

2.FVCucell_random2)½

Tminucell_random=	(β12.LSTday_ucell_random2 +	β22.LSTngt_ucell_random2+	β32.FVCucell_random2)½

Tmaxatm=	(α1
2.LSTday_ucell_atm2 +	α2

2.LSTngt_ucell_atm2+	σTmax2)½

Tminatm=	(β12.LSTday_ucell_atm2 +	β22.LSTngt_ucell_atm2+	σTmin2)½

Tmaxsurf=	(α1
2.LSTday_ucell_surf2 +	α2

2.LSTngt_ucell_surf2+	α3
2.FVCucell_local2)½

Tminsurf=	(β12.LSTday_ucell_surf2 +	β22.LSTngt_ucell_surf2+	β32.FVCucell_local2)½

Random

Atmosphere

Surface

σTmax /σTmin

=	StDev of	model	

residuals



EXAMPLE	UNCERTAINTY	FIELDS	
(1	JULY	2010)

Tminrandom

Tminatm

Tminsurf

Tmaxrandom

Tmaxatm

Tmaxsurf
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Advanced Standard Air Temperature Model

Temperature Process Decomposition
I Temperature variability is decomposed into model sub-components with defined

structure in space/time:

T (s, t) = T

clim(s, t) + T

large(s, t) + T

local(s, t)

T (s, t) = Temperature at space/time location (s, t)

T

clim(s, t) = Climatological temperature

T

large(s, t) = Large spatial/temporal scale component

T

local(s, t) = Daily, short spatial scale component



Temperature Observation Model

Observation model
Daily mean air temperatures are decomposed into variability at different scales:

yi = T (si, ti) + bi + ✏i

Where bi is a sum of observational biases affecting observation i and ✏i are non-bias
related observational errors.

yi = An air temperature observation index by i

T (si, ti) = Temperature at space/time location (si, ti)
bi = Additive bias associated with observation i

✏i = Error associated with observation i



Analysis method
Spatial interpolation based on the SPDE approach (Lindgren et al 2011):

I Temperatures are modelled as weighted sum of local functions.
I A Bayesian method, where variability/smoothness is controlled by a prior

distribution for the weights.
I Compute the probability density function of the weights conditioned on the

temperature observations.

Lindgren, F., H. Rue, J. Lindström, (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach, Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 73, 4



Analysis method

Estimation of temperatures and observation biases
Jointly estimate temperature model variables u and observation bias variables �, with
x = (u,�) and observations:

y = J

u

u + J

�

� + ✏

= J

x

x + ✏

Apply Bayes’ Rule to compute the analysis:

Prior : (x | ✓) ⇠ N (µ
x

,Q�1

x

)

Observations : (y | x,✓) ⇠ N (x,Q�1

✏

)
Posterior : p(x | y,✓) / p(y | x,✓)p(x | ✓)

Observational uncertainties are encoded into Q

✏

. Structured errors have their
structure encoded into J

�

and their magnitude � is estimated.



Model Component Solutions

Linear Model
I Each of the three model components are constructed as a linear (or linearised)

model, with a design matrix J and latent variables to be estimated x:

y = Jx + ✏

I Measurement error is additive Gaussian p(✏) = N (0,Q�1

✏

)
I Model variables x have a Gaussian prior distribution p(x) = N (µ

x

,Q�1

x

)

Estimation
Compute the distribution of x conditioned on the observations:

p(x | y,✓ = ✓̂) = N (µ
x|y,Q�1

x|y)

µ

x|y = µ

x

+ Q

�1

x|yJ

T
Q

✏

(y � Jµ

x

)

Q

x|y = Q

x

+ J

T
Q

✏

J

Efficient solution depends on the sparse structure of J , Q
x

and Q

✏

.



Demonstration Application
I Demonstrated on small region/subset

of input data.

I Applied to in situ air temperature
(HadNMAT2, GHCN Daily) and
satellite LST derived air temperature.

I Climatology fitted using observations
in 1961-1990.

I Placeholder uncertainty information.



CONCLUSIONS

• EUSTACE	attempting	an	integrated	and	coherent	
treatment	of	uncertainty	at	all	levels	of	data

• Input	data	uncertainties	have	been	estimated	and	
validated

• Propagated	and	introduced	uncertainty	
characterised as	required	at	each	step
– L1àL2àL3àAnalysis

• Coherency	across	observational	epochs	through	
consistent	statistical	treatment	of	uncertainty
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