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1 Executive Summary 
 

This report lays out the principles upon which consistent uncertainty estimates will be 
provided with the satellite-based surface temperature datasets that will be input to the 
EUSTACE analysis. 

Each provider of satellite-derived data will provide level 2 (along track, ungridded; skin 
temperature only) and daily grid average (“level 3”) surface temperature data of a named 
type (sea, land, ice, air; daily mean, min or max). The grid will be 0.25° latitude-by-longitude 
and the data provided will be the mean of the observed data in the grid cell, to be interpreted 
as an estimate of the full-area mean across the grid cell. For each cell temperature, three 
components of uncertainty will be provided, representing the uncertainty from effects whose 
errors have distinct correlation properties: random (no correlation of error component 
between cells); locally systematic (correlation of error component between “nearby” cells); 
and [large-scale] systematic (correlation of error component  between “distant” cells. 

The distinction between “nearby” and “distant” links to how the error component will be 
treated in the EUSTACE analysis procedure. Locally correlated errors will be modelled via 
spatio-temporal correlation length scales that influence the weight of an observation the air 
temperature analysis in the vicinity of its time-space location. Systematic errors will be 
accounted for by allowing a bias to be determined within the analysis procedure between 
different sources of data, whose magnitude is conditioned by the uncertainty attributed to 
systematic effects. 

Detailed explanations and proposed means of estimating the different terms are given in this 
report, for each domain, based on extensive discussions with the different groups providing 
data. 

Attaching uncertainty estimates of this nature to satellite-derived surface temperatures is 
relatively recent for sea surface temperature and is a necessary innovation for the other 
domains. Inevitably, some assumptions and approximations are adopted as data producers 
learn how to provide this improved uncertainty characterisation, and these are listed in the 
report in order to guide future developments, should the EUSTACE analysis turn out to be 
highly sensitive to particular assumptions or approximations made. 

2 Project Objectives 
 

With this deliverable, the project has contributed to the achievement of the following 
objectives (DOA, Section B1.1): 
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No. Objective Yes No 

1 

Intensively develop the hitherto immature use of Earth 
Observation estimates of Earth’s surface skin 
temperature to enable new Climate Data Records of 
the surface air temperature Essential Climate 
Variable (ECV) to be created, for all locations over all 
surfaces of Earth (i.e. land, ocean, ice and lakes), for 
every day since 1850. EUSTACE will achieve this by: 
combining information estimated from multiple 
satellites with surface air temperature measurements 
made in situ and creating complete analyses of 
surface air temperature, through the application of 
novel statistical in-filling methods.  X   

2 

Integrate these new daily surface air temperature 
Climate Data Records into a range of applications in 
Earth System Science and Climate Services and 
research, amongst others. EUSTACE will achieve this 
via the active and continuous engagement of trail-
blazer users, and the provision of products through 
already-existing user community data portals and 
service mechanisms, in standard formats.   X  

3 

Undertake and report detailed research into the 
relationships between surface skin temperature 
estimated from Earth Observation satellite 
measurements and surface air temperature observed 
in situ by conventional measurements, over all 
surfaces of the Earth, including the polar regions. This 
is likely to provide information useful for refining 
coupling in Earth system models.  X   

4 

Create a sustainable, automated system at an 
appropriate level of maturity for the potential 
production of the products beyond the lifetime of the 
project. To enable this, EUSTACE will also identify 
Earth Observation and conventional data streams that 
could be used to update the surface air temperature 
Climate Data Records in the future, including those 
from Sentinel missions.    X 

5 

Extensively validate the new surface air temperature 
Climate Data Records against independent, surface-
based reference data, sourced by the project for this 
purpose. 

   X 

6 

Develop and report new, consistent, validated 
estimates of uncertainty both in already-existing Earth 
Observation surface skin temperature estimates and 
in the new surface air temperature Climate Data 
Records, at all locations and times across the Earth’s 
surface.  X   
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7 

Develop links with related activities within Europe and 
beyond to help to ensure the execution of a joined-up 
work programme, the Copernicus Services and to 
enable the provision of requirements for the future 
surface skin temperature and surface air temperature 
observing system. X 

 

8 Other – not directly linked to one of the above 
objectives 

   

3 What is uncertainty and from where does it arise?  
 

The terms ‘error’ and ‘uncertainty’ are often unhelpfully conflated. Careful usage (following 
international standards; VIM, 2012) brings clarity to thinking about uncertainty information. 
Terms with precise definitions that need careful usage appear in italic in the next paragraph. 

A measured value results from measurement of a target quantity, called the measurand. It is 
only an estimate of the measurand, because various effects introduce errors into the process 
of measurement. These errors are unknown, although their distributional properties may be 
able to be characterized (as discussed later). Uncertainty information characterizes the 
distribution of values it is reasonable to attribute to the measurand, given the measured 
value and our characterization of effects causing error. 

In short, the error is the ‘wrongness’ of the measured value (and is unknown). The 
uncertainty describes the ‘doubt’ we have about the measurand’s value, given the measured 
value and our understanding of effects causing errors.  

Note that these technical definitions correspond well to the plain meaning of the words ‘error’ 
and ‘uncertainty’ as used by non-scientists. As well as improving communication between 
scientists, careful usage will help scientists communicate beyond their community. 

Uncertainty arises from and propagates through every physical and data transformation 
involved in creating a satellite dataset. Propagation of uncertainty to a quantity y that is 
derived by some transformation from the inputs x is described by the law of propagation of 
uncertainty (GUM, 1995), applicable where a first-order (linear) approximation is valid, or can 
be assessed by means of simulation of the transformation (such as a Monte Carlo 
approach). 

In the context of EUSTACE, the following cascade of uncertainty applies in moving from the 
satellite radiance product (“level 1” or “L1” inputs to EUSTACE) to a provided estimate of 
surface air temperature (SAT): 
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(Note: in some cases, transformation may precede aggregation in sequence of processing, 
but the same sources and of uncertainty and principles of propagation apply.) 

Several properties of the uncertainty arising from a given effect need to be quantified, 
estimated, or described: 

• The dispersion of the errors. This will be quantified in EUSTACE as the second moment 
of the estimated error probability density function (the standard deviation of the 
estimated error distribution). In the standard parlance, this is the standard uncertainty 
associated with these errors. As is common, from this point on, “standard” will be implicit 
when discussing a quantified uncertainty. 

• The shape of the error distribution. Even descriptive statements based on judgements 
are useful here. In particular, is the distribution of errors thought to depart from 
Gaussian in that 
o there is significant skewness? 
o there is a significant outlier rate? 

• The correlation of the errors between different measured values. This particularly affects 
how uncertainty is propagated in the aggregation step. The correlation of errors between 
gridded cell values is required information for the analysis of SAT. This will be 
expressed as the characteristic length of an exponential decrease in correlation 
coefficient with separation, one length for each of time and space. There may not be full 
information to characterise the length scales rigorously, in which case reasoned 
estimates will be assumed. 
 



 

EUSTACE (640171) Deliverable 1.1 Page 9 
 

4 Model for uncertainty 
 

Uncertainty will be modelled as three components:  

• “random” -- meaning errors that are both random and independent between all data  

• “locally systematic” – meaning errors that are highly correlated across short 
separations in time and distance; statisticians may refer to this case as “structured 
random” 

• “[large-scale] systematic” – meaning errors that have a structure that is persistent in 
time and space; this includes but is not limited to “biases” 

Thus, the components are distinguished by their error correlation length scales. 
(Hereafter, for convenience, the “large-scale” modifier will be dropped before 
“systematic”.) In truth, the division between locally systematic and systematic cases is 
somewhat artificial, and how best to decompose effects with a range of types of 
correlation into these components is a matter of judgement for data providers.  

This approach is: 

o a necessary minimum, since locally systematic effects are significant, and preclude 
use of a simple random/systematic model 

o an approximation, in that there are several effects that have a systematic aspect, and 
all of these are required to be partitioned into either the locally systematic or 
systematic component  

o a significant advance on what has generally been done for satellite datasets hitherto 
o based on reasonable experiences with this approach in two European Space Agency 

projects (“SST CCI” and “GlobTemperature”) 

This three-component model applies to all satellite processing levels (L1, L2, L3 and SAT).  

The following sections describe the principles for estimating each component for each 
processing level. For each component, one or more methods of estimation will be defined, 
with comments on applicability and any limitations. 

5 Level 1 uncertainty estimation 
 

Level 1 products used in EUSTACE comprise calibrated radiances with geolocation. (We will 
often, as here, use ‘radiance’ generically to cover any measure of radiation, whether 
expressed as brightness temperature, reflectance or radiance.) Since the target resolution 
for the gridded data to be used in EUSTACE is 0.25°, we may assume that consideration of 
geolocation uncertainty has negligible impact (although where an estimate for this effect 
exists, it can be used). The uncertainty estimation focuses on uncertainty in radiance. 

Ideally, L1 products would provide per pixel uncertainty information, but this is not generally 
the case. The H2020 project FIDUCEO (Fidelity and Uncertainty in Climate data records 
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from Earth Observations, www.fiduceo.eu) will address this deficiency for some relevant 
datasets by mid-2017, but for EUSTACE, such information will need to be approximated or 
parameterised. (On this and other areas where FIDUCEO will advance understanding of 
uncertainty in satellite datasets, the EUSTACE project will take opportunities to give inputs 
on requirements and review FIDUCEO datasets and tools in its capacity as a project 
interested in climate data record uncertainties.) 

Random: Detector noise, amplifier noise and digitisation cause errors that are well 
represented as being independent between image pixels. For brightness temperatures 
(BTs), this is usually expressed as noise equivalent differential temperature (NEDT) in 
temperature units, which is, in fact, standard uncertainty in BT. Since noise from these 
sources may be relatively constant in radiance and BT is a non-linear function of radiance, 
NEDT is usually expected to depend on the scene temperature. In some L1 products, the 
standard deviation of BTs when viewing calibration targets may be available per scan line, 
which can then be used to estimate NEDT. 

Locally systematic: Effects such as stray light in the sensor may affect the calibration on 
limited space-time areas within an L1 product; at present there is no basis on which to 
estimate such effects, and they are neglected. Uncertainty in on-board calibration 
parameters arises because calibration targets are viewed for a finite time giving a statistical 
uncertainty from sensor noise. The error from this source is correlated across all the scans 
that use a particular on-board calibration cycle. This effect is by design small for a good 
sensor design, and is neglected. (FIDUCEO will support revisiting these approximations in 
future.) 

Systematic: Each channel at L1 will have its specific systematic error, which propagates 
into retrieved surface temperature. Generally, efforts are made to correct for systematic 
effects in both radiance and retrieval jointly, at the stage of developing a retrieval algorithm 
rather than at L1 (although attempts at radiance bias correction are becoming more 
common). L1 contributions to systematic effects in retrieved surface temperature are difficult 
to decompose, so it is proposed that the overall uncertainty from systematic effects is 
addressed at level 2. (Again, FIDUCEO will develop a more rigorous approach in future.) 

The following methods for L1 uncertainty from random effects may be used for EUSTACE: 

METHODS FOR LEVEL 1 UNCERTAINTY 
Method ID / title Principle Comments / limitations 
L1 Random 1 / 
Constant noise 
assumption  

Use a constant value per 
channel for NEDT as a 
standard uncertainty estimate. 
Based on literature or 
engineering specifications for 
noise. 

Does not reflect expected reduction 
in noise for higher scene 
temperature, nor temporal changes 
in noise from instrument. Some 
literature/specification based 
estimates for noise may be 
conservative (over-estimated). 

L1 Random 2 / 
Constant noise-
BT relationships 

Use a fixed relationship per 
channel for NEDT as a 
function of BT as a standard 
uncertainty estimate. Based on 
literature or engineering 
specifications for noise and/or 

Reflects expected reduction in noise 
for higher scene temperature. Some 
literature/specification based 
estimates for noise may be 
conservative (over-estimated), and 
the NEDT may not in reality behave 
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deduction from instrument 
radiance-BT relationship. 

in the simple way expected. No 
account of temporal changes in noise 
from instrument. 

L1 Random 3 / 
Inference from 
calibration target 
data 

Interpolate/extrapolate from 
the observed standard 
deviation of measured values 
when viewing a calibration 
target of known temperature. 

Necessary data not available for 
every instrument. Does account for 
temporal change in sensor 
performance. If thermal gradients 
exist across targets (adding to 
spread of measured values), may be 
over estimate. 

L1 Local 1 / 
Neglect 

Assume no locally correlated 
errors sources at L1. 

Should be adequate to assume this 
for well-designed sensors, but there 
are potential exceptions. 

L1 Systematic 1 / 
Address at L2 

Large-scale systematic errors 
will lead to “biases” in retrieved 
surface temperature. Wrap up 
both effects in method L2 
Systematic 1. 

While propagating L1 systematic 
uncertainty to L2 surface temperature 
is possible in principle, there is 
limited knowledge of this in practice.   

 

6 Level 2 Uncertainty estimation 
 

From L1 products, skin surface temperature is estimated over sea, ice and land at the pixel 
level. The retrieval  generally depends on the radiances , an assumption about the 
surface emissivity  per channel, and (in some cases) other auxiliary information including 

numerical weather prediction fields, . Thus, , where the hat indicates the 

retrieval estimate of the true target measurand. Uncertainty in each of these contributes to 
the total uncertainty in the retrieved surface temperature. Additionally, surface temperature 
retrieval methods generally can never fully resolve the ambiguity in the forward relationship 
between surface temperature and observed radiances. It is generally possible to find a 
plausible perturbation in atmospheric conditions whose impact on radiance is the same as 
the effect of a perturbation in temperature: all retrievals therefore deal with some ambiguity 
that is dependent on the atmospheric conditions, and this is an additional source of 
uncertainty at L2. 

Random: Let the random component of L1 uncertainty in the channel  be . The 

effect of this combined across all    channels used for retrieval needs to be propagated 

through  to give a contribution to the estimate of uncertainty from random effects  

in the retrieved surface temperature. We assume that radiance noise is sufficiently Gaussian 
and small that the law of propagation of uncertainty is adequate for this propagation, which 
means 

(1)   
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Emissivity is an auxiliary input to all estimates of thermodynamic temperature from BTs, 
whether explicit or implicit. In the case of SST, this is considered a negligible source of error, 
since emissivity variability is relatively small, and the modelling of emissivity is relatively well 
understood as a function of salinity, wave state, temperature and view angle. For other 
cases, there is a potentially significant random error component caused by the pixel-to-pixel 
variations in emissivity not captured in emissivity auxiliary information, because it is related 
to variability on the ground that is not captured in emissivity atlases/models. The associated 
uncertainty can be estimated as 

(2)   

where, evidently, some estimate of the uncertainty in emissivity per channel is required, as 
well as evaluation of the sensitivity of the retrieval to emissivity. 

Since atmospheric fields are smooth on pixel to pixel scales, it is assumed that there is no 
random error associated with errors in : any errors will be locally correlated. Thus, the total 
uncertainty from random effects is 

(3)   

Locally systematic: Atmospheric fields are correlated on synoptic timescales. The 
correlation scales vary with weather and climatic regime: we can expect the scales to be >1 
day and >100 km, but this may require more quantification. It is assumed that errors in 
estimates of these fields from NWP are correlated on the same scales as the fields 
themselves; this assumption is plausible and pragmatic, rather than evidence-based at 
present.  Therefore, if there is sensitivity in the retrieval to an explicit set of NWP 
parameters, , then the NWP-caused errors are locally correlated, and the associated 
uncertainty is in principle calculable as 

(4)   
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where  is the correlation coefficient of the errors in two parameters, and  so that 

 is symmetric. 

This more complex form arises because correlations between errors in atmospheric 
parameters cannot be neglected. This component of uncertainty is calculated as a by-
product in optimal estimation as part of the retrieval error covariance matrix. Referring the 
reader to Rodgers (2000), the relevant equation showing this is (4.43), and the equivalent 

term is in standard retrieval notation: .  

Coefficient based methods do not explicitly evaluate eq. (4), but the retrieval ambiguity is an 
equivalent form of uncertainty in this case, and is a contributor of residuals in the fit. For 
radiative-transfer based retrieval coefficients, simulated-retrieved and simulation-input 
surface temperatures can be compared. The standard deviation of this input and output 
difference is an estimate of the magnitude of this locally correlated form of uncertainty 
(Merchant and Embury, 2014). The calculation of the uncertainty can be done on stratified 
data to parameterise the variations in magnitude of this form of uncertainty (Embury et al., 
2012). For each range, , where is a variable on which the residuals are 

stratified, the uncertainty is estimated as 

(5)   

where  is the surface temperature used for simulation and  is the retrieved estimate if 

the simulated radiances are fed to the retrieval equation. The uncertainty can then be fitted 
as a function of (which has the advantage of giving a smooth variation in estimated 
uncertainty) or read from a table for the appropriate value of . 

If coefficients are based on empirical regression, the standard deviation of the residuals to 
the fit arises from this effect plus the measurement noise in both the satellite radiances and 
the reference measurements used to fit the regression. If estimates of the variance 
contributed by these terms are available, these can be subtracted from the total variance of 
residuals to estimate the locally correlated component: 

(6)   

where  represents empirical reference data to which the retrieval is fit, and  is the 

uncertainty of the reference data. Again, this can be done on a stratified basis. 

LST retrieval assumes an emissivity which may be driven by auxiliary land classification 
information and/or and observed vegetation index. Across a particular land class area, there 
may be a mean difference between the assumed and true mean emissivity. This is thus a 
locally correlated effect on the scales of emissivity variability. The form of the propagation to 
L2 uncertainty is identical to eq. (2), but for locally correlated error components. 
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(7)   

The spatio-temporal scales of the emissivity-driven and atmospherically-driven locally 
correlated errors are likely to differ. The length scale for the emissivity errors should be 
estimated from the linear extents of the land class or features used to define emissivity 
variability. The time scale for the emissivity errors should be estimated from the time interval 
at which emissivity is updated (e.g., monthly climatological emissivity values for a particular 
location).  

Two locally correlated components and their length scales (which may be variable) can be 
provided in the case where atmospheric and emissivity effects have markedly different 
scales. Alternatively, if it is decided to stick to a strictly three-component model, a plausible 
approach is to provide a weighted mean of the estimated scales (which are in any case likely 
to be approximate), weighted according to their respective magnitudes of uncertainty. 

Systematic: Systematic errors are not merely biases, since errors that depend 
systematically on variable factors can have zero mean, yet still be systematically correctable 
in principle (if we had adequate knowledge of the effect). It is assumed here that known 
corrections have been applied by data producers, either at L1 or in the retrieval process to 
L2. 

In the simplest case, the correction is a global bias correction (which may be zero 
conceptually if no correction was found necessary). In that case, the systematic uncertainty 
is the uncertainty in that correction – a single number for all observations. 

When the surface air temperature analysis is done, offsets between different sources of 
information will be modelled and estimated. The uncertainty from systematic effects at L2 
(and L3) will be used as information to weight data sources in deducing relative biases in the 
analysis step. 

(It is likely that systematic effects lead to patterns of systematic error (bias) in the data 
(spatially, temporally and/or as a function of context) that have not been characterised, often 
because there is insufficient validation data to reveal the patterns. In some cases, the 
patterns could in principle be predicted. For example, an (unknown) constant calibration 
error in radiances for a particular sensor channel will produce a pattern of error that varies 
between observations according to the sensitivity of the retrieval process to that channel. 
The sign and overall magnitude of the systematic error is unknown, but the pattern is 
predictable. It is possible in principle that such patterns could be used in the analysis step 
(and the coefficient of the pattern estimated). This is noted for future research, since this 
capability is not presently developed by the data providers.)  

METHODS FOR LEVEL 2 UNCERTAINTY 
Method ID / title Principle Comments / limitations 
L2 Random 1 / 
Radiance noise 
propagation  

Propagate the results of 
method L1 Random 1, 2 or 3 
through the retrieval process, 
either analytically (eq. (1)) or 

Required for all cases. 
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numerically. 
L2 Random 2 / 
Emissivity noise 
propagation 

Estimate the magnitude of 
pixel-to-pixel scale emissivity 
variability within areas that, 
based on land cover class, are 
treated as having a common 
emissivity. Then use eq. (2) to 
estimate L2 impact. Combine 
this with results of L2 Random 
1. 

Within-land-class variability of 
emissivity may be difficult to 
estimate. A possibility is to use 
samples from the ASTER 1km Global 
Emissivity Database (Hulley et al., 
2012) for this characterisation. 

L2 Random 3 / 
Parameterised 
emissivity noise  

Emissivity may be 
parameterised in terms of 
NDVI or similar. The random 
effects in the input parameters 
then need to be propagated 
through the emissivity 
parameterisation to establish 
the random component of 
emissivity uncertainty. 

An alternative to L2 Random 2. 

L2 Local 1 / 
Propagate 
uncertainty from 
non-emissivity 
parameters in 
retrieval 

Use eq. (4). Requires an error covariance matrix 
for atmospheric/auxiliary parameters. 

L2 Local 2 / 
Uncertainty from 
atmosphere/fit for 
regression-based 
retrieval 

Use eq. (5) or (6) as 
appropriate. 

Alternative to L2 Local 1. 

L2 Local 2 / 
Uncertainty from 
emissivity  

Estimate locally correlated 
error from emissivity 
assumptions then use eq. (7). 

Either: combine with result of L2 
Local 1 or 2 as appropriate, e.g.: 

 if scales are 

compatible or not estimated. 
Or: report separately as a further 
locally correlated error with its own 
scale (which needs to be stated). 

L2 Systematic 1 / 
Reasoned 
estimate 

Knowledge of the satellite 
engineering specifications 
and/or validation performance 
may allow a reasoned estimate 
of the likely magnitude of 
residual bias. 

Essentially expert judgement.   

L2 Systematic 2 / 
Validation-based 

Where a statistically significant 
mean difference between 
satellite and (adequately 
representative) validation data 
has been found, the mean 
should be applied as a 
correction and the uncertainty 
in the mean (the standard 
error) provided as systematic 

Preferable to L2 Systematic 1, 
provided validation data are 
considered to be adequately 
representative.  
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uncertainty. 
L2 Systematic 3 / 
From overlaps 
between sensors 

Where one or more overlaps 
between sensor pairs are 
available, the mean differences 
between matched surface 
temperatures are indicative of 
the uncertainty from systematic 
effects. 

Preferable to L2 Systematic 2 when 
possible, since geographical range is 
likely to be more representative. 
Element of judgement may still be 
present in how the overlap relative 
biases are interpreted. 

 

7 Level 3 uncertainty estimation 
 

The uncertainty at L3 is found by propagation from the L2 components of uncertainty. The 
0.25° daily grid cell will be represented by the mean of the retrievals, , available for L2 

pixels: 

(8)   

The uncertainty from random errors in the available pixels is reduced by averaging the 
uncertainty in contributing pixels in quadrature: 

 

(9)   

and  is the uncertainty from random errors introduced when the grid cell is not fully 

sampled in space and time by valid satellite surface temperatures. This assumes that the 
locations that are sampled vary in such a way that the differences between the available 
sample mean and the unknown true cell mean are random. 

A model is required for . If the standard deviation of  across the full grid cell is , 

then an obvious parameterisation is  

(10)   

where  is the total number of pixels that would fully sample the cell and  is a 

parameter to be determined. For all , this has the properties that is zero when the 

grid cell is fully observed ( ) and that when only 1 pixel is observed, the sampling 

uncertainty equals the standard deviation ; both these limits are as required. However, 
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unless the cell is fully observed, is not known, and must be estimated from the standard 

deviation of the available pixels, . is a poor (imprecise) estimate of  for small , 

and for  is undefined. An alternative means of developing has been proposed for 

sea surface temperature by Bulgin et al. (submitted), which uses realistic sub-sampling of 
fully observed cells across many cases to find statistics of sampling error. The statistics are 
binned by  and , and a fit for is determined in terms of these parameters. It 

was found that this approach worked well for cell sizes of 0.1° and 0.05° for sea surface 
temperature. The application of the method to other domains and a cell size of 0.25° needs 
to be assessed. 

It is assumed that the spatio-temporal correlation scales of the locally correlated effects are 
much greater than ~25 km and about 1 day, and therefore this component of uncertainty is 
not reduced by averaging. This is a conservative approximation – i.e., any error from this 
approximation means this component of uncertainty is somewhat over-estimated. This 
approximation is usually defensible for the atmospheric/fitting term, since synoptic scales of 
the atmosphere are >100 km and >1 day, but may prove less realistic for emissivity effects 
(to be investigated). Hence, they propagate thus: 

(11)   

The systematic errors are common to all the contributing pixels by definition, and thus: 

(12)   

METHODS FOR LEVEL 3 UNCERTAINTY 
Method ID / title Principle Comments / limitations 
L3 Random 1  Propagate level 2 random 

effects using (9), and add 
sampling uncertainty estimate 
using, for example, eq. (10)  

Sampling uncertainty models need to 
be assessed and may be improved 
relative to proposed equation. 

L3 Locally 
correlated 1 

Use average across cell from 
level 2, i.e., eq. (11). 

 

L3 Systematic 1  Obtain from systematic term at 
level 2 directly. 

 

 

8 Uncertainty in inferred SAT 
 

The transformation from satellite-derived surface skin temperature to surface air temperature 
is 

(13)   
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where type may be daily maximum, daily minimum, daily mean or daily average1, and  
comprises the parameters of the transformation model M. The transformation may be 
applied either to L2 or L3 surface temperatures by different groups. Where applied prior to 
L3 gridding, the equations of section 7 apply to  after this transformation when the 

surface air temperatures obtained are gridded. Here, the presentation assumes the 
transformation is applied to L3 data. 

The propagation of uncertainty from  to  on the same spatial grid is straightforward: 

(14)   

for each of . Depending on the nature of the transformation and the 
correlation properties of the errors in the elements of , the uncertainty 

(15)   

may have components that are random, locally systematic and/or large-scale systematic. 
For any given component: 

(16)   

which yields the uncertainty estimates required for the surface air temperature analysis, with 
separated random, locally correlated and systematic terms. 

9 Checklist of information to be provided to the analysis 
 

• Type of temperature(s) provided 

• Statement of the geometry of the temperature provided relative to its associated 
location information. (By default for satellite-derived air temperatures, cells are 
expected to be 0.25° by 0.25° cells, with location 0°N, 0°E being a cell corner. The 
reported location by default is the centre latitude and longitude of the cell.) 

                                                
1 The daily mean is the simple average of the daily maximum and minimum, following traditional 
station air temperature conventions in some countries. The daily average is an estimate of the true 
24-hour average, which in turn will be used in the analysis step as an estimate of the daily mean, 
allowing for the fact that the daily mean and daily average may differ. 
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• Name and brief description of known error effects (source of uncertainty) that have 
been quantified and are included in the provided uncertainty estimates. Identify to 
which uncertainty component(s) each effect contributes. 

• Name and brief description of known (or suspected) error effects whose associated 
uncertainty has been unable to be quantified (and are not included in the provided 
uncertainty estimates). 

• Description of model to transform satellite surface temperature to air temperature 
estimate, including a description of the uncertainty model for the transformation. 

• The data. For a given observation at a stated location and time, this includes: 

o the air temperature estimate 

o the uncertainty from independent, random effects 

o the uncertainty from locally correlated effects2, with a correlation length scale 
in both time and space 

o the uncertainty from systematic effects 

• The error covariance matrix of the transformation model parameters, , and the set 

of sensitivities:  and  
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